Sains Malaysiana 54(5)(2025): 1231-1238
http://doi.org/10.17576/jsm-2025-5405-03
Lipid Metabolon in Non-Oleaginous
Fungus Aspergillus niger
(Metabolon Lipid dalam Kulat Bukan Oleginous Aspergillus niger)
IZYANTI
IBRAHIM1, SHUWAHIDA SHUIB2, YAP YIN XIN1 &
AIDIL ABDUL HAMID1,*
1Department of
Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Allergy and Immunology Research Centre, Institute for Medical
Research (IMR), National Institutes of Health (NIH), Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor,
Malaysia
Received: 9 November 2023/Accepted: 7 January 2025
Abstract
The lipogenic
multienzyme complex or lipid metabolon consisting of malic enzyme (ME), fatty
acid synthase (FAS), acetyl-CoA carboxylase (ACC) and ATP:citrate lyase (ACL) was observed during lipid biosynthesis of an
oleaginous fungus Cunninghamella bainieri 2A1. It is believed that high production of
fatty acid in oleaginous species is due to the association of lipogenic enzymes
forming a metabolon during lipid accumulation phase. One of the significances
of lipid metabolon is that it provides efficient and rapid channel of NADPH
directly from ME to FAS when lipid accumulation occurs. This leads to the
assumption of low lipid yield in non-oleaginous microorganisms is due to the
absence of lipid metabolon in these microorganisms. Thus, the non-oleaginous
filamentous fungi Aspergillus niger was
studied to see the association of lipid metabolon and lipid biosynthesis. The
cells of A. nigerduring both lipid
accumulation and lipid cessation phase were used to prepare cell-free extracts
using protoplasting technique. The crude proteins
were then separated by Blue Native (BN)-PAGE, associated with liquid
chromatography-tandem mass spectrometry (LC-MS/MS). No high molecular mass
complex was detected, speculating that no lipogenic multienzyme complex was
formed in non-oleaginous fungi hence very low or no storage lipid was
accumulated in this fungus.
Keywords: Aspergillus niger; lipid metabolon; lipogenesis;
non-oleaginous
Abstrak
Kompleks multienzim lipogenik atau metabolon lipid
yang terdiri daripada enzim malik (ME), asid lemak sintase (FAS), karboksilase
asetil-KoA (ACC) dan ATP: sitrat liase (ACL) didapati terbentuk semasa
biosintesis lipid kulat oleaginus Cunninghamella bainieri 2A1. Penghasilan
asid lemak jumlah yang tinggi dalam spesies oleaginus dipercayai disebabkan
oleh gabungan enzim lipogenik membentuk metabolon semasa fasa pengumpulan
lipid. Salah satu kepentingan metabolon lipid adalah untuk membolehkan
penyaluran NADPH secara berterusan dari ME ke FAS dengan cekap dan pantas semasa
tempoh pengumpulan lipid. Ini membawa kepada andaian bahawa pengumpulan lipid
yang rendah dalam mikroorganisma bukan oleaginus adalah disebabkan oleh
ketiadaan metabolon lipid dalam mikroorganisma ini. Oleh itu, kulat berfilamen
bukan oleaginus Aspergillus niger telah dikaji untuk melihat perkaitan
metabolon lipid dan biosintesis lipid. Kultur sel A. niger semasa fasa pengumpulan
lipid dan fasa pemberhentian lipid digunakan untuk menyediakan ekstrak bebas
sel menggunakan teknik protoplasting. Ekstrak bebas sel kemudiannya
dipisahkan menggunakan Blue Native (BN)-PAGE dan dianalisis menggunakan spektrometri
jisim tandem kromatografi cecair (LC-MS/MS). Tiada kompleks berjisim molekul besar
dikesan, mencadangkan bahawa tiada kompleks multienzim lipogenik terbentuk dalam
kulat bukan oleaginus dan seterusnya membawa kepada pengumpulan jumlah lipid yang
sangat rendah dalam kulat ini.
Kata kunci: Aspergillus niger;
lipogenesis; metabolon lipid; non-oleaginus
REFERENCES
Abghari, A. & Chen, S. 2017. Engineering Yarrowia
lipolytica for enhanced production of lipid and citric acid. Fermentation 3(3): 34.
André, A., Diamantopoulou,
P., Philippoussis, A., Sarris, D., Komaitis, M. & Papanikolaou, S. 2010.
Biotechnological conversions of bio-diesel derived waste glycerol into
added-value compounds by higher fungi: Production of biomass, single cell oil
and oxalic acid. Industrial Crops and Products 31(2): 407-416.
Bassard, J.E. & Halkier,
B.A. 2018. How to prove the existence of metabolons? Phytochemistry Reviews 17(2): 211-227.
Bradford, M.M. 1976. A rapid
and sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Carsanba, E., Papanikolaou,
S. & Erten, H. 2018. Production of oils and fats by oleaginous
microorganisms with an emphasis given to the potential of the nonconventional
yeast Yarrowia lipolytica. Critical Reviews in Biotechnology 38(8): 1230-1243.
Certik, M., Megova, J. &
Horenitzky, R. 1999. Effect of nitrogen sources on the activities of lipogenic
enzymes in oleaginous fungus Cunninghamella echinulata. The Journal
of General and Applied Microbiology 45(6): 289-293.
Chaney, A.L. & Marbach,
E.P. 1962. Modified reagents for determination of urea and ammonia. Clinical
Chemistry 8: 130-132.
Chen, H., Hao, G., Wang, L.,
Wang, H., Gu, Z., Liu, L., Zhang, H., Chen, W. & Chen, Y.Q. 2015.
Identification of a critical determinant that enables efficient fatty acid
synthesis in oleaginous fungi. Scientific Reports 5(1): 11247.
de Bekker, C., Wiebenga, A.,
Aguilar, G. & Wösten, H.A.B. 2009. An enzyme cocktail for efficient
protoplast formation in Aspergillus niger. Journal of Microbiological
Methods 76(3): 305-306.
Folch, J., Lees, M. &
Sloane Stanley, G.H. 1957. A simple method for the isolation and purification
of total lipides from animal tissues. Journal of Biological Chemistry 226: 497-509.
Furlan, V.J.M., Maus, V.,
Batista, I. & Bandarra, N.M. 2017. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology 48(2): 359-365.
Hamid, A.A., Shuib, S., Taha,
E.M., Omar, O., Khalil, M.S., Kader, A.J.A. & Isa, M.H.M. 2014. Influence
of N-limitation on malic enzyme isoforms and lipogenesis of Cunninghamella
bainieri 2A1. Jurnal Teknologi (Sciences and Engineering) 67(1): 1-5.
Hoarau, J., Petit, T.,
Grondin, I., Marty, A. & Caro, Y. 2020. Phosphate as a limiting factor for
the improvement of single cell oil production from Yarrowia lipolytica MUCL 30108 grown on pre-treated distillery spent wash. Journal of Water
Process Engineering 37: 101392.
Kendrick, A. & Ratledge,
C. 1992. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated
fatty acids. Lipids 27(1): 15-20.
Kolouchová, I.,
Maťátková, O., Sigler, K., Masák, J. & Řezanka, T. 2016.
Production of palmitoleic and linoleic acid in oleaginous and nonoleaginous
yeast biomass. International Journal of Analytical Chemistry 2016: 7583684.
Li, Z., Sun, H., Mo, X., Li,
X., Xu, B. & Tian, P. 2013. Overexpression of malic enzyme (ME) of Mucor
circinelloides improved lipid accumulation in engineered Rhodotorula
glutinis. Applied Microbiology and Biotechnology 97(11): 4927-4936.
Liang, Y.J. & Jiang, J.G.
2015. Characterization of malic enzyme and the regulation of its activity and
metabolic engineering on lipid production. RSC Advances 5(56): 45558-45570.
Nicaud, J.M. 2012. Yarrowia
lipolytica. Yeast 29(10): 409-418.
Ochoa-Estopier, A. &
Guillouet, S.E. 2014. D-stat culture for studying the metabolic shifts from
oxidative metabolism to lipid accumulation and citric acid production in Yarrowia
lipolytica. Journal of Biotechnology 170(1): 35-41.
Ratledge, C. 2014. The role
of malic enzyme as the provider of NADPH in oleaginous microorganisms: A
reappraisal and unsolved problems. Biotechnology Letters 36(8):
1557-1568.
Ratledge, C. 2004. Fatty acid
biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11): 807-815.
Ratledge, C. & Wynn, J.P.
2002. The biochemistry and molecular biology of lipid accumulation in
oleaginous microorganisms. Advances in Applied Microbiology 51: 1-52.
Shevchenko, A., Tomas, H.,
Havli, J., Olsen, J.V. & Mann, M. 2006. In-gel digestion for mass
spectrometric characterization of proteins and proteomes. Nature Protocols 1(6): 2856-2860.
Shuib, S., Ibrahim, I.,
Mackeen, M.M., Ratledge, C. & Hamid, A.A. 2018. First evidence for a
multienzyme complex of lipid biosynthesis pathway enzymes in Cunninghamella
bainieri. Scientific Reports 8(1): 1-10.
Shuib, S., Nazir, M.Y.M.,
Ibrahim, I., Song, Y., Ratledge, C. & Hamid, A.A. 2022. Co-existence of
type I fatty acid synthase and polyketide synthase metabolons in Aurantiochytrium SW1 and their implications for lipid biosynthesis. Biochimica et Biophysica
Acta - Molecular and Cell Biology of Lipids 1867(12): 159224.
Sindhu, R., Binod, P.,
Pandey, A., Ankaram, S., Duan, Y. & Awasthi, M.K. 2019. Biofuel production
from biomass: Toward sustainable development. In Current Developments in
Biotechnology and Bioengineering - Waste Treatment Processes for Energy
Generation, edited by Kumar, S., Kumar, R. & Pandey, A. Elsevier. pp.
79-92.
Song, Y., Wynn, J.P., Li, Y.,
Grantham, D. & Ratledge, C. 2001. A pre-genetic study of the isoforms of
malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147(6): 1507-1515.
Thevenieau, F. & Nicaud,
J.M. 2013. Microorganisms as sources of oils. OCL Oilseeds & Fats Crops
and Lipids 20(6): D603.
Wynn, J.P. & Ratledge, C.
1997. Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus
nidulans. Microbiology 143(1): 253-257.
Wynn, J.P., Kendrick, A.
& Ratledge, C. 1997. Sesamol as an inhibitor of growth and lipid metabolism
in Mucor circinelloides via its action on malic enzyme. Lipids 32(6): 605-610.
Zhang, H., Wu, C., Wu, Q.,
Dai, J. & Song, Y. 2016. Metabolic flux analysis of lipid biosynthesis in
the yeast Yarrowia lipolytica using 13C-labled glucose and gas chromatography-mass
spectrometry. PLoS ONE 11(7): e0159187.
Zhang, Y., Adams, I.P. &
Ratledge, C. 2007. Malic enzyme: The controlling activity for lipid production?
Overexpression of malic enzyme in Mucor circinelloides leads to a
2.5-fold increase in lipid accumulation. Microbiology 153(7): 2013-2025.
*Corresponding author; email: aidilah@ukm.edu.my
|